
CMPE492 – Senior Project II, Fall 2021

Low-Level Design Report

Voiceolation

Emir Yılmaz

Kemalcan Güner

Yunus Emre Günen

Supervisor: Gökçe Nur Yılmaz

Jury Members: Aslı Gençtav, Venera Adanova

Contents

1. Introduction 3

1.1 Trade-offs 3
1.1.1 Reliability vs. Cost 3
1.1.2 Security vs. Self-upgradability 4
1.1.3 Performance vs. Accuracy 4

1.2 Interface Documentation Guidelines 4

1.3 Engineering Standards 4

1.4 Definitions, Acronyms, And Abbreviations 5

2. Packages 5

2.1 Training Model Package 5
2.1.1 Dataset 5
2.1.2 Preprocessor Package 6
2.1.3 Neural Network Package 7

2.2 Application Package 8
2.2.1 File Services Package 8
2.2.2 Server Package 8

3. Class Interfaces 9
3.1 Preprocessor 9
3.2 Butterworth Filter 9
3.3 Short Time Fourier Transform 10
3.4 Model 10
3.5 Evaluation 10
3.6 Solver 10
3.7 Post-Process 11

4. References 12

2

1. Introduction

Music is one of the oldest art forms of human history. Even literature was carried on

with music and oral poems until the invention of writing. In other words, humanity has been

dealing with music in some way since its existence. Today, the global music industry has

approximately 22 billion dollars in revenue. Mixing, mastering, and editing sounds is

essential and indispensable for today’s music industry. While editing music files, we may

need to separate music sources due to various difficulties such as copyright issues, lost files,

being too old to have a stem, etc. Also, the existence of songs with inaccessible vocal parts is

more common than expected.

Thanks to new algorithms, methods, and professional fields -such as machine

learning, neural network-, separating music source has become common. There are few

software that do this job on the market. But not most of them give us reliable results due to

their algorithms or the way they coded. Also, they might not be open source or free to use.

These programs are allowed to limited people.

We realized there was a need for this field and decided to build a vocal source

separator. Voiceolation is a music source separator that extracts vocals from songs.

Voiceolation is not only used for remixing or editing but also used for music information

retrieval (MIR) in order to define and brand music genres. The music information retrieval

has become a more important part for some well known companies like Spotify, Facebook,

and Deezer. They already have some projects on music separation techniques to expand MIR

views for example, genre classification, identify vocals and language, etc.

1.1 Trade-offs

1.1.1 Reliability vs. Cost

There is a direct proportionality between the size of the dataset and the effectiveness

of the neural network. A bigger dataset means a more powerful neural network. There are

millions of songs in this world but in order to train them for our model they need to be

labeled. To create a source separation dataset, you need STEMs for each song which is not

easy to acquire. As a result, more data for a dataset means more memory, money, and time.

We used an already prepared dataset which is MUSDB18 instead of building our own dataset

from scratch.

3

1.1.2 Security vs. Self-upgradability

As we mentioned over, more data means more reliable results for our project. While

users use our project, they upload their song files and get vocal and instruments files. That

means we would gain more and more datasets after each user usage. However, because of

user security, we do not keep their data. We do not keep either uploaded music files nor result

files which are vocal and instrumental song files

1.1.3 Performance vs. Accuracy

As we mentioned in previous reports, we cut off signals that are above a certain

frequency range. The reason is human vocals are around 80-1000 Hz and we do not need to

work on higher frequencies. So, we eliminate the unnecessary frequencies between 2048Hz

and 20000 Hz with a low-pass filter. However, there can still be meaningful vocal sounds

above our cut-off threshold because of production methods such as using vocoders,

vocaloids, autotune, reverb, and harmony. Basically, we trade off an unlikely amount of over

2048 Hz vocals to get the more processable and clean spectrogram.

1.2 Interface Documentation Guidelines
In this document, we use a standard naming method which is upper camel for class

names. Then, we have descriptions for classes. After class description, we have methods with

name and short mission information.

class Class Name

Description of the class.

Methods

Method: To state what the method does.

1.3 Engineering Standards
We use UML guidelines for general purpose modeling object oriented and IEEE

standards for projects of general computer engineering.

4

1.4 Definitions, Acronyms, And Abbreviations

Term Definitions, acronyms, and abbreviations

stem A stem is a group of audio sources mixed together, for example a vocal stem

consists of vocal record and/or vocal chops.

CNN Convolutional Neural Network1

MUSDB18 “The musdb18 is a dataset of 150 full length music tracks (~10h duration) of

different genres along with their isolated drums, bass, vocals and other

stems.”2

U-Net “The U-Net is convolutional network architecture for fast and precise

segmentation of images.”3

STFT Short Time Fourier Transform4

2. Packages

2.1 Training Model Package
Voiceolation will be a neural network project, so we will write and train a network

model. This model will be used for vocal source separation.

2.1.1 Dataset

To train an artificial intelligence, there should be a dataset. We will use MUSDB18, it

has mainly 5 labeled stems -as isolated drums, bass, vocals, and others part- of every song in

it. For our goal that is vocal separation via image segmentation, the vocals and other stems

are essential. The neural network will be trained spectrograms of songs in the dataset by

using their library (musdb) and preprocessor package.

4 Short-time Fourier transform - Wikipedia
3 https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
2 https://sigsep.github.io/datasets/musdb.html
1 Convolutional neural network - Wikipedia

5

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://sigsep.github.io/datasets/musdb.html
https://en.wikipedia.org/wiki/Convolutional_neural_network

2.1.2 Preprocessor Package

The preprocessor package will generate a spectrogram of every song in the dataset by

applying a low-pass filter. Vocals are between 80-1000 Hz approximately (Goddard Blythe,

2017), after observing the spectrograms we found some outlier vocals on higher frequencies.

So, we decided on 2048 Hz as the threshold of the filter. We will use the Butterworth filter

also known as ‘maximally flat magnitude filter’ to get as smooth a spectrogram as possible.

Also, in order to generate a spectrogram, we need Fourier transforms, ‘short-time Fourier

transform(STFT)’ will be used on the preprocessor package.

Figure 1: Preprocessor Package Diagram

6

2.1.3 Neural Network Package

Figure 2: Neural Network Package Diagram

The preprocessor-generated spectrograms of the songs in the dataset (MUSDB18) are

used for training and modeling the neural network. Our CNN architecture will be U-Net or

akin to U-Net architecture. The U-Net architecture will be seen below.

Figure 3: U-Net Architecture

7

2.2 Application Package

Figure 4: Application Package Diagram

2.2.1 File Services Package

It will handle sound files: gets a music file from the user, forwards to the server

package for vocal separation; and gets the sound file that consists of isolated vocals from the

server, forwards to the user for downloading.

2.2.2 Server Package

Like in the neural network of the training part, the server will isolate the vocal and

present a sound file to the file services. This time, the model will be prepared thanks to

training.The post-processor will convert the spectrogram output of the neural networks to the

audio file and send it to the file services.

8

3. Class Interfaces
Due to not fully completed neural network architecture, we did not add methods to

3.4, 3.5, and 3.6 as they are to be decided.

3.1 Preprocessor

Class: Preprocessor

This class is used for loading audio files as floating time series.

Methods

get samplerate: this method gets samplerate of the audio file which is fixed in musdb
dataset but we keep it flexible just in case

get ndarray: this method gets n dimensional array of audio file

load musicfile: loads sound file from file explorer or/and client side of website

3.2 Butterworth Filter

Class: Butterworth Filter

This class is used for applying a low-pass filter to audio.

Methods

set cutoff frequency: this method sets the threshold for filter, it will keep the lower
frequencies and suspend the higher frequencies because it will be setted as low-pass filter

set sampling frequency: the sampling frequency that we will use will be modified by this
method, it will transform into nyquist frequency and normalized to fit scipy’s digital
butterworth filter

set order: sets order of the filter high orders

9

3.3 Short Time Fourier Transform

Class: Short Time Fourier Transform

This class creates a time-frequency domain that represents the audio signal by taking
discrete fourier transform over short time.

Methods

getData: this method gets filtered audio signal data as n dimensional array

set framesize: this method sets the framesize for stft, default is 2048

set hopsize: this method sets the hopsize for stft, default is framesize/4

3.4 Model

Class: Model

This class contains a U-Net model for training. It is a convolutional neural network. This
class will have U-Net and training environment parameters.

3.5 Evaluation

Class: Evaluation

This class is for testing the model’s accuracy for unseen but labeled data in order to
improve it for future runs.

3.6 Solver

Class: Solver

This class is for improving the loss by using a stochastic gradient descent based optimizer.
We will use Adam optimizer as it is the best option in most deep learning cases. Class will
have evaluation environment parameters and result displayer method.

10

3.7 Post-Process

Class: Postprocess

This class is for reverting the spectrogram back to audio signal via reverse short time
fourier transform and writing it to a sound file.

Methods

inverse_stft: this method reads the processed spectrogram (ndarrays) and turns it back to a
floating time series.
write file: takes the time series in order to write it out to a sound file.

11

4. References

1. Choi, W. (2020, October 22). A pytorch implementation of the paper: "Lasaft: Latent

source attentive frequency transformation for conditioned source separation".

GitHub. Retrieved October 21, 2021, from

https://github.com/ws-choi/Conditioned-Source-Separation-LaSAFT.

2. Global Music Report 2021. (2021, March 23). IFPI Issues Global Music Report 2021.

Retrieved October 21, 2021, from

https://www.ifpi.org/ifpi-issues-annual-global-music-report-2021/.

3. Jun Hyun, L. (2018, June 18). Pytorch implementation of U-Net, R2U-net, attention

U-Net, and attention R2U-net. GitHub. Retrieved October 21, 2021, from

https://github.com/LeeJunHyun/Image_Segmentation.

4. McFee, B., Metsai, A., McVicar, M., Balke, S., Thomé, C., Raffel, C., Zalkow, F.,

Malek, A., Dana, Lee, K., Nieto, O., Ellis, D., Mason, J., Battenberg, E., Seyfarth, S.,

Yamamoto, R., Viktorandreevichmorozov, Choi, K., Moore, J., … Thassilo. (2021,

May 25). Librosa/librosa: 0.8.1RC2. Zenodo. Retrieved October 21, 2021, from

https://zenodo.org/record/4792298#.YXEU6chfhPY.

5. Meseguer-Brocal, G. (2019, November 2). Control mechanisms to the U-net

architecture for doing multiple source separation instruments. GitHub. Retrieved

October 21, 2021, from https://github.com/gabolsgabs/cunet.

6. MUSDB18. SigSep. (n.d.). Retrieved October 21, 2021, from

https://sigsep.github.io/datasets/musdb.html.

7. Numpy and scipy documentation. Numpy and Scipy Documentation - Numpy and

Scipy documentation. (n.d.). Retrieved October 21, 2021, from

https://docs.scipy.org/doc/.

8. Ronneberger, O. (2015, May 18). U-Net: Convolutional Networks for Biomedical

Image Segmentation. Retrieved October 21, 2021, from

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/.

9. Sun, J. (2015, November 9). Python Lowpass Filter. Gist GitHub. Retrieved October

21, 2021, from https://gist.github.com/junzis/e06eca03747fc194e322.

10. What is Package Diagram? What is package diagram? (n.d.). Retrieved October 21,

2021, from

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-pack

age-diagram/.

12

https://github.com/ws-choi/Conditioned-Source-Separation-LaSAFT
https://www.ifpi.org/ifpi-issues-annual-global-music-report-2021/
https://github.com/LeeJunHyun/Image_Segmentation
https://zenodo.org/record/4792298#.YXEU6chfhPY
https://github.com/gabolsgabs/cunet
https://sigsep.github.io/datasets/musdb.html
https://docs.scipy.org/doc/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://gist.github.com/junzis/e06eca03747fc194e322
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-package-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-package-diagram/

